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According to the no-cloning theorem of quantum information theory, arbitrary quantum states cannot be
cloned because of the linearity of quantum mechanics [1]. The security of quantum key distribution in quantum
cryptography depends on this physical fact. The implication is that one cannot produce an exact copy of an
arbitrary qubit. This does not mean however that an approximate copy cannot be made. The function of one
type of quantum copier is to produce an approximate copy of a qubit that is as close to being an exact copy as
possible, and with the original qubit changed as little as possible in the process. A variety of quantum copiers
have been considered in the literature on quantum information processing.
A universal quantum copier is one that produces two identical copies whose quality is independent of the

input state. The universal quantum copier must copy an arbitrary pure state j ii which can be written in a
chosen basis, [j0ii ; j1ii], as follows:

j ii = � j0ii + � j1ii ; (1)

for which a general parameterization of the coe¢ cients is given by

� = sin � exp (i�) ; � = cos �; (2)

in which i =
p
�1, and � and � are angles on the Bloch sphere (not to be confused with the index i in Eq. (1)).

The universal quantum copier must satisfy three basic requirements [2]: (1) If the state of the original qubit at
the output of the quantum copier is denoted by the density operator �outi , and that of the quantum copy is �outf ,
one requires that

�outi = �outf ; (3)

(2) If the measure of distance between two states with density operators �1and �2 is taken to be the Hilbert
-Schmidt norm, namely, d(�1; �2) =Tr

�
(�1 � �2)2

�
, then the requirement that pure states be copied equally well

can be expressed by
d(�outi ; �idi ) = d(�outf ; �idf ) = C; (4)

where the superscript id denotes the ideal density operator describing the input state, and C is a constant, inde-
pendent of the input state; and (3) Equation (4) should be minimized with respect to all unitary transformations
within the Hilbert space of the two qubits and the quantum copier.
It can be shown that the unitary transformation that implements the universal quantum copier by satisfying

requirements (1)-(3) is given by [3]:

j0ii jQix =) (3=2)�1=2 j0ii j0if j"ix + 3
�1=2 j+iif j#ix ; (5)

and
j1ii jQix =) (3=2)�1=2 j1ii j1if j#ix + 3

�1=2 j+iif j"ix ; (6)

where

j+iif = 2
�1=2
i

�
j1ii j0if + j0ii j1if

�
: (7)

Here indices i, f , and x designate the original qubit, the copy, and the copier, respectively. The copier has a
two-dimensional state space with basis vectors j"ix and j#ix, and jQix denotes the initial state of the copier.
The implication of Eqs. (5)-(7) is that the copy contains 5/6 of the desired state and 1/6 of the undesired. The



universal quantum copier can be implemented with a network of simple quantum gates. It can be shown that ow-
ing to residual correlations between the copy and the quantum copier, quantum copying degrades entanglement.
Also, it is important to stress that quantum decoherence is an obstacle to useful implementations of quantum
copying because it limits the state storage time [4].
Quantum copiers can be utilized in eavesdropping on quantum key distribution in quantum cryptography by

obtaining at least part of an unknown quantum key. An alternative approach to obtaining at least part of a
secret quantum key exploits quantum entanglement of an eavesdropping device with the key during its transit
between the legitimate users [5], [6]. If the error rate of the legitimate users is su¢ ciently high, then a prohibitive
amount of key must be sacri�ced during key distillation.
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